Lee Jordan

OTC-26007-MS Top of Line Corrosion: An Evaluation of Critical Parameters that Drive Mitigation Methods and System Design in Deepwater Gas Systems

Top of Line Corrosion (TOLC) occurs in deepwater wet gas systems when water vapor condenses on the upper internal walls of the flowline due to the heat exchange occurring between the hot fluid and the colder environment. The condensed liquid becomes enriched by the corrosive species naturally present in the gas stream and assumes a low pH because it does not contain any buffering species such as bicarbonate or iron. The predominant concern is carbon dioxide (CO2), which reacts with water to form carbonic acid (H2CO3), although hydrogen sulfide (H2S) and organic acids can also present significant challenges and drive the corrosion process.

SPE 147205 - Materials Selection: A Systems Engineering Approach

2011 Abstract, Eric Caldwell, Karthik Annadorai, Grant Gibson, Lee Jordan

Subsea and topsides materials selection is becoming a vital part in the development and long term sustainability of deepwater oil and gas production facilities. Increasing challenges associated with capital and operating cost constraints, schedule compression, remote locations, and the need to deploy materials ever closer to their known limits makes fit for purpose materials selection a complex and difficult issue that crosses many different discipline boundaries. Materials selection is primarily governed by corrosion engineering principles and applied chemical inhibition practices, and then by project specifics. However, there are two different practices that are generally followed that dictate how materials are ultimately selected. The first is by a standard materials selection process using guidance such as that provided in NORSOK M-001, and the second is by using a more informal system with limited guidance that involves individually selecting materials for a specific project.

 In actuality, the materials selection process is a combination of both. The selection process to identify which materials are considered appropriate is routine and straightforward and is dictated by various corrosion parameters and associated risks. Often this high-level assessment does not appropriately address project specifics, so causing the final material selections to be substantially different from those initially proposed.

One of the specific items that often drives this change in materials selection philosophy is the use of chemical inhibitors for corrosion inhibition and the perceived feasibility and level of risk associated with this. Use of a systems engineering approach to material selection can be used beneficially as a process that accelerates the determination and initial optimization of the materials, and the selection of chemicals and their injection locations, and associated monitoring methods and locations in a given topsides, subsea or water injection system design.

Source: SPE Annual Technical Conference and Exhibition, 30 October-2 November 2011, Denver, Colorado, USA

Copyright 2011. Society of Petroleum Engineers

Read More 

SPE 147552 - Integrated Field Optimization Strategy Applied to an Offshore Water Injection Project

2011 Abstract, F.R. Chaban, SPE, L.C. Jordan, SPE, and K.M. Annadorai, SPE, Gibson Applied Technology and Engineering; T.W. Wilkinson, SPE, and P. Myers, Energy XXI

 Some of the most significant challenges faced with respect to the management of offshore water injection projects are associated with maintaining injectivity into the reservoir and with handling H2S produced due to reservoir souring. This paper presents the process followed and findings generated by a comprehensive review of a mature water injection project performed with the goal of delivering a coordinated operating strategy that would maximize the life of field revenues associated with water injection.

An integrated and comprehensive field optimization approach to maximize the whole-life value of the total asset was undertaken. Aspects covered included water injection system operating practices, mechanical design and integrity management of the injection system, the chemical treatment program followed for both the injection and production streams, and reservoir modeling and production management.

Recommendations resulting from this review were prioritized based on their impact on the whole-life performance of the asset, rather than the more common practice of separating the injection and production system reviews or the assessments of reservoir management and facility operation. Areas of particular benefit were identified in association with implementation of an active souring control strategy to reduce future risks to the production system metallurgy by sulfide stress cracking (SSC), a focus on integrity management of the water injection system to maximize long-term system availability, and the implementation of an inter-well water tracer injection program to enable the validation of current reservoir models and support the placement of future injectors and producers.

Source: SPE Annual Technical Conference and Exhibition, 30 October-2 November 2011, Denver, Colorado, USA

Copyright 2011. Society of Petroleum Engineers

NACE 11099 - Further Analysis On M13Cr-110 NACE TM0177 Method A Test Acceptability Prediction

2011 Abstract, Eric Caldwell, Grant Gibson, Lee Jordan

Martensitic stainless steels continue to be one of the most widely used corrosion resistant alloys in oil and gas developments. Determining if a martensitic stainless steel is acceptable in an unproven environment requires testing to confirm, but predicting the outcome of a given test environment is often initially based on personal experience rather than a qualitative and quantitative assessment. An empirical method for improving the predictability of NACE TM0177 Method A Tensile tests on modified 13Cr 110ksi grade martensitic stainless steels based on an H2S/Chloride/pH function has previously been developed based on published data in order to address this uncertainty. The environments considered by this function are only limited by the capabilities of the NACE TM0177 Method A test, and provide a method for rapidly estimating if a M13Cr 110ksi grade should pass or fail in multiple different environments. As a follow-on to the development of this empirical method, data points from new tests were used to check the general predictability of the H2S/Chloride/pH function. The general function was modified due to the addition of the new data, and subsequently checked again against a separate set of data. The nature and implications of these findings are discussed and conclusions drawn regarding the performance and value of the methodology for the evaluation of future materials applications.

Source: CORROSION 2011, March 13 - 17, 2011 , Houston, Texas

Copyright 2011. NACE International

Read More

NACE-11346 Dealing With Uncertainty - Impact Of Scaling Prediction On Concept Selection For Deepwater Production Systems

Concept selection and initial design of deepwater subsea production systems can have a profound impact on the evaluation of the commercial viability of a discovery. Although detailed design comes later in the process, the decisions made at this early stage of a project will generally provide the template that is carried through to construction and operation. Scale management can be a significant factor in deciding the outcome of the concept selection phase, particularly for fields that are expected to require seawater injection at some stage in their design life. Early in a project it is common to have information from only one or two exploration wells and where water samples are often not available, are heavily contaminated, or have been gathered from locations away from the main production targets. 

NACE 05633 - The Impact of Reservoir Souring upon Decision Processes Made During the Design of New Deepwater Developments

2005 Abstract, Lee C. Jordan, Justin P. Landry, Howard Duhon, and Grant T. Gibson, GATE LLC

This paper presents an overview of the impact of potential future reservoir souring and associated H2S production on the design decisions that must be made during the development of a deepwater production asset. The problem is inherently one of decision making under uncertainty, as determination of the likely magnitude of reservoir souring is a process requiring review of a large number of variables and the application of predictive techniques of limited accuracy. This paper reviews some of the practical uncertainties involved in predicting souring and identifies how these subsequently impact design and operability issues. By exhaustively identifying design objectives in the form of an objectives map it is possible to assess the impact of souring on all aspects of the design. Best practice approaches to risk management and mitigation are also presented in relation to the design of both water injection and production facilities.

Source: CORROSION 2005, April 3 - 7, 2005 , Houston, Tx

Copyright 2005. NACE International